14.7 Videos Guide

14.7a

- Definition of local maximum and local minimum values
 - o If $f(a,b) \ge f(x,y)$ for all (x,y) in an open disk, then f(a,b) is a local maximum
 - o If $f(a, b) \le f(x, y)$ for all (x, y) in an open disk, then f(a, b) is a local minimum
- Definition of a critical point
 - A critical point is a point (a, b) in the domain of f such that $f_x(a, b) = f_y(a, b) = 0$ or one of the first partial derivatives does not exist
- Second Derivatives Test and description of a saddle point
 - \circ Let (a, b) be a critical point of f and let

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- If D < 0, then (a, b) is a saddle point
- If D > 0, then
 - if $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum
 - if $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum
- If D = 0, then the Second Derivatives Test is inconclusive

14.7b

Exercise:

• Find the local maximum and minimum values and saddle point(s) of the function. Then graph the surface using a window that shows these characteristics.

$$f(x,y) = xye^{-(x^2+y^2)/2}$$

14.7c

- Absolute extrema
 - o If $f(a,b) \ge f(x,y)$ for all (x,y) in the domain of f, then f(a,b) is the absolute maximum
 - o If $f(a,b) \le f(x,y)$ for all (x,y) in the domain of f, then f(a,b) is the absolute minimum

Exercise:

• Find the absolute maximum and minimum values of f on the set D. f(x,y)=x+y-xy; D is the closed triangular region with vertices (0,0), (0,2), and (4,0).